By Topic

Secondary Electron Emission on Space Materials: Evaluation of the Total Secondary Electron Yield From Surface Potential Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Secondary electron emission (SEE) is one of the main parameters controlling spacecraft potential. It also plays an important role in the triggering of the multipactor phenomenon occurring in waveguides (electron avalanche in microwave electric fields). In this paper, we propose an original method adapted to low-energy SEE measurements on dielectrics and conductors (incident electron energy below 20 eV). It is based on Kelvin probe (KP) surface potential measurements after electron irradiation. It is particularly well suited to insulating materials but can also be used on metals by letting the sample potential float. We present results of SEE measurements performed on metals used in waveguides, Kapton, Teflon, and CMX cover glass. In order to avoid any experimental artifact due to the earth magnetic field and conduct accurate low-energy measurements with the KP method, the distance between the electron gun and the sample is chosen to be negligible compared to the Larmor radius.

Published in:

Plasma Science, IEEE Transactions on  (Volume:40 ,  Issue: 2 )