By Topic

Weakly Supervised Graph Propagation Towards Collective Image Parsing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Si Liu ; Nat. Lab. of Pattern Recognition, Inst. of Autom., Beijing, China ; Shuicheng Yan ; Tianzhu Zhang ; Changsheng Xu
more authors

In this work, we propose a weakly supervised graph propagation method to automatically assign the annotated labels at image level to those contextually derived semantic regions. The graph is constructed with the over-segmented patches of the image collection as nodes. Image-level labels are imposed on the graph as weak supervision information over subgraphs, each of which corresponds to all patches of one image, and the contextual information across different images at patch level are then mined to assist the process of label propagation from images to their descendent regions. The ultimate optimization problem is efficiently solved by Convex Concave Programming (CCCP). Extensive experiments on four benchmark datasets clearly demonstrate the effectiveness of our proposed method for the task of collective image parsing. Two extensions including image annotation and concept map based image retrieval demonstrate the proposed image parsing algorithm can effectively aid other vision tasks.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 2 )