Cart (Loading....) | Create Account
Close category search window
 

BioThreads: A Novel VLIW-Based Chip Multiprocessor for Accelerating Biomedical Image Processing Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Stevens, D. ; Dept. of Electr. Eng., Loughborough Univ., Loughborough, UK ; Chouliaras, V. ; Azorin-Peris, V. ; Jia Zheng
more authors

We discuss BioThreads, a novel, configurable, extensible system-on-chip multiprocessor and its use in accelerating biomedical signal processing applications such as imaging photoplethysmography (IPPG). BioThreads is derived from the LE1 open-source VLIW chip multiprocessor and efficiently handles instruction, data and thread-level parallelism. In addition, it supports a novel mechanism for the dynamic creation, and allocation of software threads to uncommitted processor cores by implementing key POSIX Threads primitives directly in hardware, as custom instructions. In this study, the BioThreads core is used to accelerate the calculation of the oxygen saturation map of living tissue in an experimental setup consisting of a high speed image acquisition system, connected to an FPGA board and to a host system. Results demonstrate near-linear acceleration of the core kernels of the target blood perfusion assessment with increasing number of hardware threads. The BioThreads processor was implemented on both standard-cell and FPGA technologies; in the first case and for an issue width of two, full real-time performance is achieved with 4 cores whereas on a mid-range Xilinx Virtex6 device this is achieved with 10 dual-issue cores. An 8-core LE1 VLIW FPGA prototype of the system achieved 240 times faster execution time than the scalar Microblaze processor demonstrating the scalability of the proposed solution to a state-of-the-art FPGA vendor provided soft CPU core.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:6 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.