By Topic

Reduced-complexity column-layered decoding and implementation for LDPC codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cui, Z. ; Qualcomm Inc., San Diego, CA, USA ; Wang, Z. ; Zhang, X.

Layered decoding is well appreciated in low-density parity-check (LDPC) decoder implementation since it can achieve effectively high decoding throughput with low computation complexity. This work, for the first time, addresses low-complexity column-layered decoding schemes and very-large-scale integration (VLSI) architectures for multi-Gb/s applications. At first, the min-sum algorithm is incorporated into the column-layered decoding. Then algorithmic transformations and judicious approximations are explored to minimise the overall computation complexity. Compared to the original column-layered decoding, the new approach can reduce the computation complexity in check node processing for high-rate LDPC codes by up to 90% while maintaining the fast convergence speed of layered decoding. Furthermore, a relaxed pipelining scheme is presented to enable very high clock speed for VLSI implementation. Equipped with these new techniques, an efficient decoder architecture for quasi-cyclic LDPC codes is developed and implemented with 0.13%%m VLSI implementation technology. It is shown that a decoding throughput of nearly 4%Gb/s at a maximum of 10 iterations can be achieved for a (4096, 3584) LDPC code. Hence, this work has facilitated practical applications of column-layered decoding and particularly made it very attractive in high-speed, high-rate LDPC decoder implementation.

Published in:

Communications, IET  (Volume:5 ,  Issue: 15 )