Cart (Loading....) | Create Account
Close category search window
 

Machine Learning in Financial Crisis Prediction: A Survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Yang Lin ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Ya-Han Hu ; Chih-Fong Tsai

For financial institutions, the ability to predict or forecast business failures is crucial, as incorrect decisions can have direct financial consequences. Bankruptcy prediction and credit scoring are the two major research problems in the accounting and finance domain. In the literature, a number of models have been developed to predict whether borrowers are in danger of bankruptcy and whether they should be considered a good or bad credit risk. Since the 1990s, machine-learning techniques, such as neural networks and decision trees, have been studied extensively as tools for bankruptcy prediction and credit score modeling. This paper reviews 130 related journal papers from the period between 1995 and 2010, focusing on the development of state-of-the-art machine-learning techniques, including hybrid and ensemble classifiers. Related studies are compared in terms of classifier design, datasets, baselines, and other experimental factors. This paper presents the current achievements and limitations associated with the development of bankruptcy-prediction and credit-scoring models employing machine learning. We also provide suggestions for future research.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.