Cart (Loading....) | Create Account
Close category search window

A Bayesian Framework for Automated Cardiovascular Risk Scoring on Standard Lumbar Radiographs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Petersen, K. ; Univ. of Copenhagen, Copenhagen, Denmark ; Ganz, M. ; Mysling, P. ; Nielsen, M.
more authors

We present a fully automated framework for scoring a patient's risk of cardiovascular disease (CVD) and mortality from a standard lateral radiograph of the lumbar aorta. The framework segments abdominal aortic calcifications for computing a CVD risk score and performs a survival analysis to validate the score. Since the aorta is invisible on X-ray images, its position is reasoned from 1) the shape and location of the lumbar vertebrae and 2) the location, shape, and orientation of potential calcifications. The proposed framework follows the principle of Bayesian inference, which has several advantages in the complex task of segmenting aortic calcifications. Bayesian modeling allows us to compute CVD risk scores conditioned on the seen calcifications by formulating distributions, dependencies, and constraints on the unknown parameters. We evaluate the framework on two datasets consisting of 351 and 462 standard lumbar radiographs, respectively. Promising results indicate that the framework has potential applications in diagnosis, treatment planning, and the study of drug effects related to CVD.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.