By Topic

Particle Filter With a Mode Tracker for Visual Tracking Across Illumination Changes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Das, S. ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Kale, Amit ; Vaswani, N.

In this correspondence, our goal is to develop a visual tracking algorithm that is able to track moving objects in the presence of illumination variations in the scene and that is robust to occlusions. We treat the illumination and motion (x-y translation and scale) parameters as the unknown “state” sequence. The observation is the entire image, and the observation model allows for occasional occlusions (modeled as outliers). The nonlinearity and multimodality of the observation model necessitate the use of a particle filter (PF). Due to the inclusion of illumination parameters, the state dimension increases, thus making regular PFs impractically expensive. We show that the recently proposed approach using a PF with a mode tracker can be used here since, even in most occlusion cases, the posterior of illumination conditioned on motion and the previous state is unimodal and quite narrow. The key idea is to importance sample on the motion states while approximating importance sampling by posterior mode tracking for estimating illumination. Experiments demonstrate the advantage of the proposed algorithm over existing PF-based approaches for various face and vehicle tracking. We are also able to detect illumination model changes, e.g., those due to transition from shadow to sunlight or vice versa by using the generalized expected log-likelihood statistics and successfully compensate for it without ever loosing track.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )