By Topic

A 0.24-nJ/b Wireless Body-Area-Network Transceiver With Scalable Double-FSK Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Joonsung Bae ; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Republic of Korea ; Kiseok Song ; Hyungwoo Lee ; Hyunwoo Cho
more authors

An energy-efficient wireless body-area-network (WBAN) transceiver is implemented in 0.18-μm CMOS technology with 1-V supply voltage. For the low energy consumption, the body channel communication (BCC) PHY is utilized with the theoretical results of Maxwell's equation analysis behind the BCC. Based on the channel analysis, the resonance matching (RM) and contact impedance sensing (CIS) techniques are proposed to enhance the quality of the body channel. A double-FSK modulation scheme is adopted with high scalability to fulfill the IEEE 802.15.6 Task Group specifications. In addition, a low-power double-FSK transceiver is implemented by five circuit techniques: 1) a reconfigurable LNA with CIS; 2) a current-reuse wideband demodulator; 3) a divider-based local oscillator (LO) generation with duty-cycle correction in the receiver; 4) a reconfigurable driver with RM; and 5) a divider-based digital double-FSK modulator in the transmitter. As a result, fully WBAN compatible receiver and transmitter consume 2.4 and 2 mW, respectively, at a data rate of 10 Mb/s, corresponding to energy consumption of 0.24 nJ per received bit and 0.2 nJ per transmitted bit.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:47 ,  Issue: 1 )