By Topic

A Study on Optimal Sizing of Superconducting Magnetic Energy Storage in Distribution Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Byung-Kwan Kang ; Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Seung-Tak Kim ; Byung-Chul Sung ; Jung-Wook Park

This paper proposes a method to determine the optimal size of superconducting magnetic energy storage (SMES) to improve the stability of distribution power system with photovoltaic (PV) generation. The output power of PV system fluctuates according to changing weather conditions. Then, the system is subject to be unstable. In order to improve its stability, the SMES is applied. In general, the SMES is being considered as a strong candidate among energy storage devices in industry due to its high efficiency, fast response, and high energy density.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )