By Topic

A Synchronization Technique for Bidirectional IPT Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thrimawithana, D.J. ; Dept. of Electr. & Electron. Eng., Auckland Univ. of Technol., Auckland, New Zealand ; Madawala, U.K. ; Neath, M.

Bidirectional inductive power transfer (IPT) systems are attractive for applications such as electric vehicles and vehicle-to-grid systems which preferably require “contactless” and two-way power transfer. However, in contrast to unidirectional IPT systems, bidirectional IPT systems require more sophisticated control strategies to control the power flow. An indispensible component of such control strategies is the robust and accurate synchronization between the primary- and pickup-side converters, without which the transfer of real power in any direction cannot be guaranteed. This paper proposes a novel technique that synchronizes converters on both the primary and pickup sides of bidirectional IPT systems. The technique uses an auxiliary winding, located on the pickup side, to produce a synchronizing signal which, in turn, can be utilized to regulate the real power flow. This paper also presents a mathematical model for the proposed technique and investigates its sensitivity for component tolerances. The viability of the technique, which is applicable to both single- and multiple-pickup IPT systems, is demonstrated through both simulations and experimental results of a 1-kW prototype bidirectional IPT system.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 1 )