By Topic

A Power–Frequency Controller for Bidirectional Inductive Power Transfer Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Madawala, U.K. ; Univ. of Auckland, Auckland, New Zealand ; Neath, M. ; Thrimawithana, D.J.

Inductive power transfer (IPT) technology is a well-recognized technique for supplying power to a wide range of applications with no physical contacts. With the emergence of applications such as electric vehicles and vehicle-to-grid systems, IPT systems with bidirectional power flow have become a recent focus. In contrast to simple unidirectional IPT systems, bidirectional systems are complex in nature and essentially require more sophisticated and robust control strategies. This paper proposes a new controller, which is based on power-frequency droop characteristics of IPT systems, to regulate its power flow in both directions without a dedicated communication link. The proposed controller is applicable to unidirectional as well as bidirectional IPT systems with either single or multiple loads and ensures that power intake by the load side is always kept within the capability of the supply side. Analysis, together with both experimental and simulated results, of a 1-kW single-load bidirectional IPT system is presented with discussions to show that the proposed droop controller can successfully be used to regulate the two-way power flow.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 1 )