By Topic

On the Accuracy of the Gaussian Approximation for the Evaluation of Nonlinear Effects in OFDM Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Araujo, T. ; Inst. de Telecomun., Lisbon, Portugal ; Dinis, R.

The almost Gaussian nature of OFDM (Orthogonal Frequency Division Multiplexing) signals with high number of subcarriers N is widely employed to characterize nonlinearly distorted OFDM signals and to evaluate the corresponding performance. In this paper we study the accuracy of the Gaussian approach when evaluating nonlinear effects in OFDM signals with finite number of subcarriers, showing the strengths and limitations of this approach. It is shown that the decomposition in useful and self-interference components is valid even for a reduced number of subcarriers. The Gaussian approximation of the nonlinear self-interference at the subcarrier level is very accurate provided that N2 is high. However, the nonlinear distortion levels slightly lower than the ones obtained with the Gaussian approximation, with relative errors dropping with 1/N, leading to somewhat pessimistic SIR levels (Signal to Interference Ratio).

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 2 )