Cart (Loading....) | Create Account
Close category search window
 

Euclidean-space measures of robotic joint failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
English, J.D. ; Purdue Univ., West Lafayette, IN, USA ; Maciejewski, A.A.

Robotic joint failures are directly characterized and measured in joint space. A locking failure, for example, is one for which a joint cannot move, and it gives an error equal to the desired value minus the locked value. This article extends the joint-space characterization to Euclidean space by measuring a failure's effect there. The approach is based on a primitive measure of point error that can be defined to be distance or path length. It is used to form comprehensive measures through weighted integration over Euclidean-space regions. For kinematically redundant manipulators, minimizing the measures can be used to induce failure tolerance by either reducing the likelihood of collision-induced damage before a failure or reducing end-effector error after a failure. Examples for both cases are given

Published in:

Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on  (Volume:4 )

Date of Conference:

20-25 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.