Cart (Loading....) | Create Account
Close category search window
 

EQAR: Effective QoS-Aware Relay Node Placement Algorithm for Connecting Disjoint Wireless Sensor Subnetworks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sookyoung Lee ; Dept. of Comput. Sci. & Electr. Eng. (CSEE), Univ. of Maryland, Baltimore County (UMBC), Baltimore, MD, USA ; Younis, M.

In some applications of wireless sensor networks (WSNs), it may be necessary to link a number of disjoint segments in order to form a federated system. The segments can be simply distinct WSNs that operate autonomously or partitions of a single WSN that has suffered significant damage. Linking these segments may be subject to different intersegment quality of service (QoS) requirements. This paper presents an effective approach for federating these segments by populating the least number of relay nodes (RNs) such that the connectivity and QoS requirements are satisfied. Finding the optimal number and position of RNs is NP-hard and heuristics are thus pursued. The deployment area is modeled as a grid with equal-sized cells. A cost is assigned to each cell based on the residual capabilities of relays populated in it. The optimization problem is then mapped to finding the cell-based least-cost paths that collectively meet the QoS requirements. The performance of our approach is validated through extensive simulation experiments. We further demonstrate the beneficial aspects of the resulting topology with respect to degree of connectivity and fault resilience.

Published in:

Computers, IEEE Transactions on  (Volume:60 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.