By Topic

Radiation-Induced Defect Evolution and Electrical Degradation of AlGaN/GaN High-Electron-Mobility Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Puzyrev, Y.S. ; Dept. of Phys. & Astron., Vanderbilt Univ., Nashville, TN, USA ; Roy, T. ; Zhang, E.X. ; Fleetwood, D.M.
more authors

Threshold-voltage shifts and increases in 1/f noise are observed in proton-irradiated AlGaN/GaN high-electron-mobility transistors, indicating defect-mediated device degradation. Quantum mechanical calculations demonstrate that low-energy recoils caused by particle interactions with defect complexes are more likely to occur than atomic displacements in a defect-free region of the crystal. We identify the responsible defects and their precursors in the defect-mediated displacement mechanism. The electronic properties of these defects are consistent with the increases in threshold voltage and 1/f noise in proton irradiation experiments.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 6 )