By Topic

AdaBoost for Text Detection in Natural Scene

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jung-Jin Lee ; Dept. of Brain & Cognitive Eng., Korea Univ., Seoul, South Korea ; Pyoung-Hean Lee ; Seong-Whan Lee ; Yuille, A.
more authors

Detecting text regions in natural scenes is an important part of computer vision. We propose a novel text detection algorithm that extracts six different classes features of text, and uses Modest AdaBoost with multi-scale sequential search. Experiments show that our algorithm can detect text regions with a f= 0.70, from the ICDAR 2003 datasets which include images with text of various fonts, sizes, colors, alphabets and scripts.

Published in:

Document Analysis and Recognition (ICDAR), 2011 International Conference on

Date of Conference:

18-21 Sept. 2011