By Topic

Volume Analysis Using Multimodal Surface Similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haidacher, M. ; Inst. of Comput. Graphics & Algorithms, Vienna Univ. of Technol., Vienna, Austria ; Bruckner, S. ; Groller, E.

The combination of volume data acquired by multiple modalities has been recognized as an important but challenging task. Modalities often differ in the structures they can delineate and their joint information can be used to extend the classification space. However, they frequently exhibit differing types of artifacts which makes the process of exploiting the additional information non-trivial. In this paper, we present a framework based on an information-theoretic measure of isosurface similarity between different modalities to overcome these problems. The resulting similarity space provides a concise overview of the differences between the two modalities, and also serves as the basis for an improved selection of features. Multimodal classification is expressed in terms of similarities and dissimilarities between the isosurfaces of individual modalities, instead of data value combinations. We demonstrate that our approach can be used to robustly extract features in applications such as dual energy computed tomography of parts in industrial manufacturing.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:17 ,  Issue: 12 )