By Topic

Adaptive Steganalysis of Least Significant Bit Replacement in Grayscale Natural Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fillatre, L. ; Univ. de Technol. de Troyes, Troyes, France

This paper deals with the detection of hidden bits in the Least Significant Bit (LSB) plane of a natural image. The mean level and the covariance matrix of the image, considered as a quantized Gaussian random matrix, are unknown. An adaptive statistical test is designed such that its probability distribution is always independent of the unknown image parameters, while ensuring a high probability of hidden bits detection. This test is based on the likelihood ratio test except that the unknown parameters are replaced by estimates based on a local linear regression model. It is shown that this test maximizes the probability of detection as the image size becomes arbitrarily large and the quantization step vanishes. This provides an asymptotic upper-bound for the detection of hidden bits based on the LSB replacement mechanism. Numerical results on real natural images show the relevance of the method and the sharpness of the asymptotic expression for the probability of detection.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 2 )