Cart (Loading....) | Create Account
Close category search window
 

A Comparison of Information Functions and Search Strategies for Sensor Planning in Target Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guoxian Zhang ; Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA ; Ferrari, S. ; Chenghui Cai

This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.