Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Development of Advanced Thermoplastic Composite Projectiles for High-Velocity Shots With the PEGASUS Railgun

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The work presented here aimed at developing advanced thermoplastic composite laminates specifically dedicated to the fabrication of brush-armature supporting structures for the PEGASUS railgun of the French-German Research Institute of Saint-Louis. The main objective is to surpass the results obtained previously with glass-fiber-reinforced epoxy composites. Due to higher ductility and superior dynamic behavior of PEEK polymers, an S2-glass woven fabric preimpregnated with a PEEK resin was selected. The interlaminar resistance and tensile behavior of the material was characterized experimentally. The results led to the identification of the most suitable fiber/resin ratio and fabrication process for thick laminates. Several prototypes weighing about 320 g were produced and used for six shots with the PEGASUS railgun. Already in the first series of experiments, the laminates show a remarkable mechanical resistance, and a maximal velocity of 2440 m/s was obtained.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 12 )