Cart (Loading....) | Create Account
Close category search window
 

Protein subcellular localization prediction based on profile alignment and Gene Ontology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shibiao Wan ; Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., Hung Hom, China ; Mak, Man-Wai ; Sun-Yuan Kung

The functions of proteins are closely related to their subcellular locations. Computational methods are required to replace the laborious and time-consuming experimental processes for proteomics research. This paper proposes combining homology-based profile alignment methods and functional-domain based Gene Ontology (GO) methods to predict the subcellular locations of proteins. The feature vectors constructed by these two methods are recognized by support vector machine (SVM) classifiers, and their scores are fused to enhance classification performance. The paper also investigates different approaches to constructing the GO vectors based on the GO terms returned from InterProScan. The results demonstrate that the GO methods are comparable to profile-alignment methods and overshadow those based on amino-acid compositions. Also, the fusion of these two methods can outperform the individual methods.

Published in:

Machine Learning for Signal Processing (MLSP), 2011 IEEE International Workshop on

Date of Conference:

18-21 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.