Cart (Loading....) | Create Account
Close category search window
 

A synergetic approach to accurate analysis of cache-related preemption delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kleinsorge, J.C. ; Inf. 12, Tech. Univ. Dortmund, Dortmund, Germany ; Falk, H. ; Marwedel, P.

The worst-case execution time (WCET) of a task denotes the largest possible execution time for all possible inputs and thus, hardware states. For non-preemptive multitask scheduling, techniques for the static estimation of safe upper bounds have been subject to industrial practice for years. For preemptive scheduling however, the isolated analysis of tasks becomes imprecise as interferences among tasks cannot be considered with sufficient precision. For such scenarios, the cache-related preemption delay (CRPD) denotes a key metric as it reflects the effects of preemptions on the execution behavior of a single task. Until recently, proposals for CRPD analyses were often limited to direct mapped caches or comparably imprecise for k-way set-associative caches. In this paper, we propose how the current best techniques for CRPD analysis, which have only been proposed separately and for different aspects of the analysis can be brought together to construct an efficient CRPD analysis with unique properties. Moreover, along the construction, we propose several different enhancements to the methods employed. We also exploit that in a complete approach, analysis steps are synergetic and can be combined into a single analysis pass solving all formerly separate steps at once. In addition, we argue that it is often sufficient to carry out the combined analysis on basic block bounds, which further lowers the overall complexity. The result is a proposal for a fast CRPD analysis of very high accuracy.

Published in:

Embedded Software (EMSOFT), 2011 Proceedings of the International Conference on

Date of Conference:

9-14 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.