Cart (Loading....) | Create Account
Close category search window

Symbolic simulation on complicated loops for WCET Path Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duc-Hiep Chu ; Nat. Univ. of Singapore, Singapore, Singapore ; Jaffar, J.

We address the Worst-Case Execution Time (WCET) Path Analysis problem for bounded programs, formalized as discovering a tight upper bound of a resource variable. A key challenge is posed by complicated loops whose iterations exhibit non-uniform behavior. We adopt a brute-force strategy by simply unrolling them, and show how to make this scalable while preserving accuracy. Our algorithm performs symbolic simulation of the program. It maintains accuracy because it preserves, at critical points, path-sensitivity. In other words, the simulation detects infeasible paths. Scalability, on the other hand, is dealt with by using summarizations, compact representations of the analyses of loop iterations. They are obtained by a judicious use of abstraction which preserves critical information flowing from one iteration to another. These summarizations can be compounded in order for the simulation to have linear complexity: the symbolic execution can in fact be asymptotically shorter than a concrete execution. Finally, we present a comprehensive experimental evaluation using a standard benchmark suite. We show that our algorithm is fast, and importantly, we often obtain not just accurate but exact results.

Published in:

Embedded Software (EMSOFT), 2011 Proceedings of the International Conference on

Date of Conference:

9-14 Oct. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.