By Topic

Hard-real-time scheduling of data-dependent tasks in embedded streaming applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bamakhrama, M. ; Leiden Inst. of Adv. Comput. Sci., Leiden Univ., Leiden, Netherlands ; Stefanov, T.

Most of the hard-real-time scheduling theory for multiprocessor systems assumes independent periodic or sporadic tasks. Such a simple task model is not directly applicable to modern embedded streaming applications. This is because a modern streaming application is typically modeled as a directed graph where nodes represent actors (i.e. tasks) and edges represent data-dependencies. The actors in such graphs have data-dependency constraints and do not necessarily conform to the periodic or sporadic task models. Therefore, in this paper we investigate the applicability of hard-real-time scheduling theory for periodic tasks to streaming applications modeled as acyclic Cyclo-Static Dataflow (CSDF) graphs. In such graphs, the actors are data-dependent, however, we analytically prove that they (i.e. the actors) can be scheduled as implicit-deadline periodic tasks. As a result, a variety of hard-real-time scheduling algorithms for periodic tasks can be applied to schedule such applications with a certain guaranteed throughput. We compare the throughput resulting from such scheduling approach to the maximum achievable throughput of an application for a set of 19 real streaming applications. We find that in more than 80% of the cases, the throughput resulting from our approach is equal to the maximum achievable throughput.

Published in:

Embedded Software (EMSOFT), 2011 Proceedings of the International Conference on

Date of Conference:

9-14 Oct. 2011