By Topic

New considerations in the input filter design of a three-phase buck-type PWM rectifier for aircraft applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Silva, M. ; Centro de Electron. Inductrial, Univ. Politec. de Madrid, Madrid, Spain ; Hensgens, N. ; Oliver, J. ; Alou, P.
more authors

An EMI filter for a three-phase buck-type medium power pulse-width modulation rectifier is designed. This filter considers differential mode noise and complies with MIL-STD-461E for the frequency range of 10kHz to 10MHz. In industrial applications, the frequency range of the standard starts at 150kHz and the designer typically uses a switching frequency of 28kHz because the fifth harmonic is out of the range. This approach is not valid for aircraft applications. In order to design the switching frequency in aircraft applications, the power losses in the semiconductors and the weight of the reactive components should be considered. The proposed design is based on a harmonic analysis of the rectifier input current and an analytical study of the input filter. The classical industrial design does not consider the inductive effect in the filter design because the grid frequency is 50/60Hz. However, in the aircraft applications, the grid frequency is 400Hz and the inductance cannot be neglected. The proposed design considers the inductance and the capacitance effect of the filter in order to obtain unitary power factor at full power. In the optimization process, several filters are designed for different switching frequencies of the converter. In addition, designs from single to five stages are considered. The power losses of the converter plus the EMI filter are estimated at these switching frequencies. Considering overall losses and minimal filter volume, the optimal switching frequency is selected.

Published in:

Energy Conversion Congress and Exposition (ECCE), 2011 IEEE

Date of Conference:

17-22 Sept. 2011