By Topic

E-AHRW: An Energy-Efficient Adaptive Hash Scheduler for Stream Processing on Multi-core Servers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jilong Kuang ; Comput. Sci. & Eng. Dept., Univ. of California, Riverside, CA, USA ; Laxmi Bhuyan ; Haiyong Xie ; Danhua Guo

We study a streaming network application-video transcoding to be executed on a multi-core server. It is important for the scheduler to minimize the total processing time and preserve good video quality in an energy-efficient manner. However, the performance of existing scheduling schemes is largely limited by ineffective use of the multi-core architecture characteristic and undifferentiated transcoding cost in terms of energy consumption. In this paper, we identify three key factors that collectively play important roles in affecting transcoding performance: memory access (M), core/cache topology (C) and transcoding format cost (C), or MC2 for short. Based on MC2, we propose E-AHRW, an Energy-efficient Adaptive Highest Random Weight hash scheduler by extending the HRW scheduler proposed for packet scheduling on a homogeneous multiprocessor. E-AHRW achieves stream locality and load balancing at both stream and packet (frame) level by adaptively adjusting the hashing decision according to real-time weighted queue length of each processing unit (PU). Based on E-AHRW, we also design, implement and evaluate a hash-tree scheduler to further reduce the computation cost and achieve more effective load balancing on multi-core architectures. Through implementation on an Intel Xeon server and evaluations on realistic workload, we demonstrate that E-AHRW improves throughput, energy efficiency and video quality due to better load balancing, lower L2 cache miss rate and negligible scheduling overhead.

Published in:

Architectures for Networking and Communications Systems (ANCS), 2011 Seventh ACM/IEEE Symposium on

Date of Conference:

3-4 Oct. 2011