By Topic

Semi-Serial On-Chip Link Implementation for Energy Efficiency and High Throughput

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Nigussie, E. ; Dept. of Inf. Technol., Univ. of Turku, Turku, Finland ; Tuuna, S. ; Plosila, J. ; Isoaho, J.
more authors

A high-throughput and low-energy semi-serial on-chip communication link based on novel design techniques and circuit solutions is presented. This self-timed link is designed using high-speed serialization/deserializtion and pulse dual-rail encoding techniques. The link also employs wave-pipelined differential pulse current-mode signaling to maintain the high speed data intake from the serializer. The energy efficiency of the proposed semi-serial link, which consists of bit-serial links in parallel, mainly comes from the sharing of the novel serializer's control circuit among the bit-serial links. In addition, the integration of pulse signaling with wave-pipelining, the use of a new low-complexity data validity detection technique, and the avoidance of data decoding logic also contribute to the power reduction. Furthermore, the formulated pulse dual-rail encoding provides an opportunity to implement pulse signaling at no cost. The ability to detect data validity at bit level allows acknowledgment per word without losing the delay-insensitivity of the transmission. The proposed semi-serial link is analyzed and compared with bit-serial and fully bit-parallel links for 64-bit data and communication distances of 1 to 8 mm. The semi-serial link which consists of eight bit-serial links provides 72.72 Gbps throughput with 286 fJ/bit energy dissipation for 8 mm transmission. It dissipates the lowest energy per bit compared to fully bit-parallel links while achieving the same throughput. The links are designed and simulated in Cadence Analog Spectre using 65-nm technology from STMicroelectronics.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 12 )