By Topic

A New Adaptive Line Enhancer Based on Singular Spectrum Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanei, S. ; Dept. of Comput., Univ. of Surrey, Guildford, UK ; Lee, T.K.M. ; Abolghasemi, V.

Original adaptive line enhancer (ALE) is used for denoising periodic signals from white noise. ALE, however, relies mainly on second order similarity between the signal and its delayed version and is more effective when the signal is narrowband. A new ALE based on singular spectrum analysis (SSA) is proposed here. In this approach in the reconstruction stage of SSA, the eigentriples are adaptively selected (filtered) using the delayed version of the data. Unlike the conventional ALE where (second) order statistics are taken into account, here the full eigen-spectrum of the embedding matrix is exploited. Consequently, the system works for non-Gaussian noise and wideband periodic signals. By performing some experiments on synthetic signals it is demonstrated that the proposed system is very effective for separation of biomedical data, which often have some periodic or quasi-periodic components, such as EMG affected by ECG artefacts. This data are examined here.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 2 )