By Topic

Stabilization of Periodic Orbits for Planar Walking With Noninstantaneous Double-Support Phase

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaveh Akbari Hamed ; Intelligent Systems Laboratory, Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran ; Nasser Sadati ; William A. Gruver ; Guy A. Dumont

This paper presents an analytical approach to design a continuous time-invariant two-level control scheme for asymptotic stabilization of a desired period-one trajectory for a hybrid model describing walking by a planar biped robot with noninstantaneous double-support phase and point feet. It is assumed that the hybrid model consists of both single- and double-support phases. The design method is based on the concept of hybrid zero dynamics. At the first level, parameterized continuous within-stride controllers, including single- and double-support-phase controllers, are employed. These controllers create a family of 2-D finite-time attractive and invariant submanifolds on which the dynamics of the mechanical system is restricted. Moreover, since the mechanical system during the double-support phase is overactuated, the feedback law during this phase is designed to be minimum norm on the desired periodic orbit. At the second level, parameters of the within-stride controllers are updated by an event-based update law to achieve hybrid invariance, which results in a reduced-order hybrid model for walking. By these means, stability properties of the periodic orbit can be analyzed and modified by a restricted Poincaré return map. Finally, a numerical example for the proposed control scheme is presented.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:42 ,  Issue: 3 )