By Topic

Evaluation of Three MRI-Based Anatomical Priors for Quantitative PET Brain Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kathleen Vunckx ; Nuclear Medicine, K.U. Leuven, Leuven, Belgium ; Ameya Atre ; Kristof Baete ; Anthonin Reilhac
more authors

In emission tomography, image reconstruction and therefore also tracer development and diagnosis may benefit from the use of anatomical side information obtained with other imaging modalities in the same subject, as it helps to correct for the partial volume effect. One way to implement this, is to use the anatomical image for defining the a priori distribution in a maximum-a-posteriori (MAP) reconstruction algorithm. In this contribution, we use the PET-SORTEO Monte Carlo simulator to evaluate the quantitative accuracy reached by three different anatomical priors when reconstructing positron emission tomography (PET) brain images, using volumetric magnetic resonance imaging (MRI) to provide the anatomical information. The priors are: 1) a prior especially developed for FDG PET brain imaging, which relies on a segmentation of the MR-image (Baete , 2004); 2) the joint entropy-prior (Nuyts, 2007); 3) a prior that encourages smoothness within a position dependent neighborhood, computed from the MR-image. The latter prior was recently proposed by our group in (Vunckx and Nuyts, 2010), and was based on the prior presented by Bowsher (2004). The two latter priors do not rely on an explicit segmentation, which makes them more generally applicable than a segmentation-based prior. All three priors produced a compromise between noise and bias that was clearly better than that obtained with postsmoothed maximum likelihood expectation maximization (MLEM) or MAP with a relative difference prior. The performance of the joint entropy prior was slightly worse than that of the other two priors. The performance of the segmentation-based prior is quite sensitive to the accuracy of the segmentation. In contrast to the joint entropy-prior, the Bowsher-prior is easily tuned and does not suffer from convergence problems.

Published in:

IEEE Transactions on Medical Imaging  (Volume:31 ,  Issue: 3 )