Cart (Loading....) | Create Account
Close category search window

Dynamic evidential reasoning for change detection in remote sensing images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhun-ga Liu ; Sch. of Autom., Northwestern Polytech. Univ., Xi'an, China ; Dezert, J. ; Mercier, G. ; Quan Pan

Theories of evidence have already been applied more or less successfully in the fusion of remote sensing images. These attempts were based on the classical evidential reasoning which works under the condition that all sources of evidence and their fusion results are related to the same invariable (static) frame of discernment. When working with multitemporal remote sensing images, some change occurrences are possible between two images obtained at a different period of time, and these changes need to be detected efficiently in particular applications. The classical evidential reasoning is adapted for working with an invariable frame of discernment over time, but it cannot efficiently detect nor represent the occurrence of change from heterogeneous remote sensing images when the frame is possibly changing over time. To overcome this limitation, dynamic evidential reasoning (DER) is proposed for the sequential fusion of multitemporal images. A new state-transition frame is defined in DER, and the change occurrences can be precisely represented by introducing a statetransition operator. Two kinds of dynamical combination rules working in the free model and in the constrained model are proposed in this new framework for dealing with the different cases. Moreover, the prior probability of state transitions is taken into account, and the link between DER and Dezert-Smarandache theory is presented. The belief functions used in DER are defined similarly to those defined in the Dempster-Shafer theory. As shown in the last part of this paper, DER is able to estimate efficiently the correct change detections as a postprocessing technique. Two applications are given to illustrate the interest of DER: The first example is based on a set of two SPOT images acquired before and after a flood, and the second example uses three QuickBird images acquired during an earthquake event.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.