By Topic

Analysis and optimization of fault-tolerant task scheduling on multiprocessor embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Reliability is a major requirement for most safety-related systems. To meet this requirement, fault-tolerant techniques such as hardware replication and software re-execution are often utilized. In this paper, we tackle the problem of analysis and optimization of fault-tolerant task scheduling for multiprocessor embedded systems. A set of existing fault-and process-models are adopted and a Binary Tree Analysis (BTA) is proposed to compute the system-level reliability in the presence of software/hardware redundancy. The BTA is integrated into a multi-objective evolutionary algorithm via a two-step encoding to perform reliability-aware design optimization. The optimization results contain the mapping of tasks to processing elements, the exact task and message schedule and the fault-tolerance policy assignment. Based on the observation that permanent faults need to be considered together with transient faults to achieve optimal system design, we propose a virtual mapping technique to take both types of faults into account. To the best of our knowledge, this is the first approach in fault-tolerant task scheduling that considers permanent and transient faults in a unified manner. The effectiveness of our approach is illustrated using several case studies.

Published in:

Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2011 Proceedings of the 9th International Conference on

Date of Conference:

9-14 Oct. 2011