Cart (Loading....) | Create Account
Close category search window

Deposition of Diamond-Like Carbon Films on Inner Wall Surfaces of Millimeter-Size-Diameter Steel Tubes by Plasma Source Ion Implantation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baba, K. ; Appl. Technol. Div., Ind. Technol. Center of Nagasaki, Nagasaki, Japan ; Hatada, R. ; Flege, S. ; Ensinger, W.

Diamond-like carbon (DLC) film deposition on the interior surfaces of steel tubes was carried out by plasma source ion implantation. SUS304 austenitic-type stainless steel tubes with inner diameters of 9, 5, and 4 mm were used as substrate tubes. Acetylene was the working gas for the plasma that was generated by applying a negative pulse voltage of -18 kV to the substrates. The surface morphology of the films and the film thickness were observed by atomic force microscopy and scanning electron microscopy. The composition within the film and at the interface was examined by depth profiling with Auger electron spectroscopy and secondary ion mass spectrometry. The film structure was characterized by Raman spectroscopy. The friction coefficient of the untreated substrate and the DLC films was evaluated by a reciprocating sliding test. The DLC film surfaces were smooth, and no special structure was observed on the surface. The DLC film thicknesses, structure, and composition on the interior surface of the steel tube depend, on the one hand, on the gas and pulse conditions and, on the other hand, on the distance from the end of the tube, as well as on the diameter of the tube. A low friction coefficient of 0.2 was derived for the deposited DLC films.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.