By Topic

Synchronous FPGA-Based High-Resolution Implementations of Digital Pulse-Width Modulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Navarro, D. ; Dept. of Electron. Eng. & Commun., Univ. of Zaragoza, Zaragoza, Spain ; Lucía, O. ; Barragán, L.A. ; Artigas, J.I.
more authors

Advantages of digital control in power electronics have led to an increasing use of digital pulse-width modulators (DPWM). However, the clock frequency requirements may exceed the operational limits when the power converter switching frequency is increased, while using classical DPWM architectures. In this paper, we present two synchronous designs to increase the resolution of the DPWM implemented on field programmable gate arrays (FPGA). The proposed circuits are based on the on-chip digital clock manager block present in the low-cost Spartan-3 FPGA series and on the I/O delay element (IODELAYE1) available in the high-end Virtex-6 FPGA series. These solutions have been implemented, tested, and compared to verify the performance of these architectures.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )