By Topic

Analytical Modeling for Delay-Sensitive Video Over WLAN

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bobarshad, H. ; Eng. Dept., Tarbiat Modares Univ., Tehran, Iran ; van der Schaar, M. ; Aghvami, A.H. ; Dilmaghani, R.S.
more authors

Delay-sensitive video transmission over IEEE 802.11 wireless local area networks (WLANs) is analyzed in a cross-layer optimization framework. The effect of delay constraint on the quality of received packets is studied by analyzing “expired-time packet discard rate”. Three analytical models are examined and it is shown that M/M/1 model is quite an adequate model for analyzing delay-limited applications such as live video transmission over WLAN. The optimal MAC retry limit corresponding to the minimum “total packet loss rate” is derived by exploiting both mathematical analysis and NS-2 simulations. We have shown that there is an interaction between "packet overflow drop" and "expired-time packet discard" processes in the queue. Subsequently, by introducing the concept of virtual buffer size, we will obtain the optimal buffer size in order to avoid "packet overflow drop". We finally introduced a simple and yet effective real-time algorithm for retry-limit adaptation over IEEE 802.11 MAC in order to maintain a loss protection for delay-critical video traffic transmission, and showed that the average link-layer throughput can be improved by using our adaptive scheme.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 2 )