By Topic

T–S Fuzzy Model Identification With a Gravitational Search-Based Hyperplane Clustering Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chaoshun Li ; Sch. of Hydropower & Inf. Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Jianzhong Zhou ; Bo Fu ; Pangao Kou
more authors

In order to improve the performance of the fuzzy clustering algorithm in fuzzy space partition in the identification of the Takagi-Sugeno (T-S) fuzzy model, a hyperplane prototype fuzzy clustering model is proposed. To solve the clustering objective function, which could not be handled by the gradient method as the traditional clustering method fuzzy c-means does, a newly developed excellent global search method, which is the gravitational search algorithm (GSA), is employed. Then, the GSA-based hyperplane clustering algorithm (GSHPC) is proposed and illuminated. GSHPC is used to partition the fuzzy space and identify premise parameters of the T-S fuzzy model, and orthogonal least squares is exploited to identify the consequent parameters. Comparative experiments are designed to verify the validity of the proposed clustering algorithm and the T-S fuzzy model identification method, and the results show that the new method is effective in describing a complicated nonlinear system with significantly high accuracies compared with approaches in the literature.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:20 ,  Issue: 2 )