Cart (Loading....) | Create Account
Close category search window
 

Creation of Individual Defects at Extremely High Proton Fluences in Carbon Nanotube p{-}n Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Comfort, E.S. ; Coll. of Nanoscale Sci. & Eng., Univ. at Albany-SUNY, Albany, NY, USA ; Fishman, M. ; Malapanis, Argyrios ; Hughes, H.
more authors

We show that carbon nanotubes are robust under high H2+ ion fluences. We draw this conclusion by analyzing radiation-induced defects in reconfigurable single-walled carbon nanotube p-n diodes with partially suspended nanotubes. Our analysis show that any defects created through radiation is likely the result of interactions between the nanotube and the substrate, whereas the suspended region of the nanotube remains undamaged. In addition, we show that key features in the diode characteristics can be explained by a single radiation-induced defect that enhances the minority carrier generation rate of only one carrier type.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.