By Topic

A Case-Based Retrieval System Using Natural Language Processing and Population-Based Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hsu, W. ; Dept. of Radiol. Sci., Univ. of California, Los Angeles, CA, USA ; Taira, R.K. ; Vinuela, F. ; Bui, A.A.T.

Electronic medical records capture large quantities of patient data generated as a result of routine care. Secondary use of this data for clinical research could provide new insights into the evolution of diseases and help assess the effectiveness of available interventions. Unfortunately, the unstructured nature of clinical data hinders a user's ability to understand this data: tools are needed to structure, model, and visualize the data to elucidate patterns in a patient population. We present a case-based retrieval framework that incorporates an extraction tool to identify concepts from clinical reports, a disease model to capture necessary context for interpreting extracted concepts, and a model-driven visualization to facilitate querying and interpretation of the results. We describe how the model is used to group, filter, and retrieve similar cases. We present an application of the framework that aids users in exploring a population of intracranial aneurysm patients.

Published in:

Healthcare Informatics, Imaging and Systems Biology (HISB), 2011 First IEEE International Conference on

Date of Conference:

26-29 July 2011