By Topic

A Learning Architecture for Scheduling Workflow Applications in the Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barrett, E. ; Sch. of Eng. & Inf., Nat. Univ. of Ireland, Galway, Ireland ; Howley, E. ; Duggan, J.

The scheduling of workflow applications involves the mapping of individual workflow tasks to computational resources, based on a range of functional and non-functional quality of service requirements. Workflow applications such as scientific workflows often require extensive computational processing and generate significant amounts of experimental data. The emergence of cloud computing has introduced a utility-type market model, where computational resources of varying capacities can be procured on demand, in a pay-per-use fashion. In workflow based applications dependencies exist amongst tasks which requires the generation of schedules in accordance with defined precedence constraints. These constraints pose a difficult planning problem, where tasks must be scheduled for execution only once all their parent tasks have completed. In general the two most important objectives of workflow schedulers are the minimisation of both cost and make span. The cost of workflow execution consists of both computational costs incurred from processing individual tasks, and data transmission costs. With scientific workflows potentially large amounts of data must be transferred between compute and storage sites. This paper proposes a novel cloud workflow scheduling approach which employs a Markov Decision Process to optimally guide the workflow execution process depending on environmental state. In addition the system employs a genetic algorithm to evolve workflow schedules. The overall architecture is presented, and initial results indicate the potential of this approach for developing viable workflow schedules on the Cloud.

Published in:

Web Services (ECOWS), 2011 Ninth IEEE European Conference on

Date of Conference:

14-16 Sept. 2011