By Topic

Dynamic Average Modeling of Front-End Diode Rectifier Loads Considering Discontinuous Conduction Mode and Unbalanced Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

Electric power distribution systems of many commercial and industrial sites often employ variable frequency drives and other loads that internally utilize dc. Such loads are often based on front-end line-commutated rectifiers. The detailed switch-level models of such rectifier systems can be readily implemented using a number of widely available digital programs and transient simulation tools, including the Electromagnetic Transient (EMT)-based programs and Matlab/Simulink. To improve the simulation efficiency for the system-level transient studies with a large number of such subsystems, the so-called dynamic average models have been utilized. This paper presents the average-value modeling methodologies for the conventional three-phase (six-pulse) front-end rectifier loads. We demonstrate the system operation and the dynamic performance of the developed average models in discontinuous and continuous modes, as well as under balanced and unbalanced operation.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 1 )