By Topic

Efficient Compression of QRS Complexes Using Hermite Expansion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sandryhaila, A. ; Dept. of Electr. & Comput. Eng., Carnegie-Mellon Univ., Pittsburgh, PA, USA ; Saba, S. ; Puschel, M. ; Kovacevic, J.

We propose a novel algorithm for the compression of ECG signals, in particular QRS complexes. The algorithm is based on the expansion of signals with compact support into a basis of discrete Hermite functions. These functions can be constructed by sampling continuous Hermite functions at specific sampling points. They form an orthogonal basis in the underlying signal space. The proposed algorithm relies on the theory of signal models based on orthogonal polynomials. We demonstrate that the constructed discrete Hermite functions have important ad- vantages compared to continuous Hermite functions, which have previously been suggested for the compression of QRS complexes. Our algorithm achieves higher compression ratios compared with previously reported algorithms based on continuous Hermite functions, discrete Fourier, cosine, or wavelet transforms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 2 )