By Topic

N-Type, Ion-Implanted Silicon Solar Cells and Modules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

Ion-implanted, screen-printed, high-efficiency, stable, n-base silicon solar cells fabricated from readily available 156-mm pseudosquare Czochralski wafers are described, along with prototype modules assembled from such cells. Two approaches are presented. The first approach, which involves a single phosphorus implant, has been used to produce cells (239 cm2) having a tight distribution of Jsc, Voc, and fill factor over a wide range of wafer resistivity (factor of 10), with Fraunhofer-certified efficiencies up to 18.5%. In spite of the full screen-printed and alloyed Al back, a method has been developed to solder such cells in a module. The second approach, which involves implanting both phosphorus for back-surface field (BSF) and boron for front emitter, has been used to produce n-base cells having local back contacts and dielectric (SiNx/SiO2) surface passivation. Efficiencies up to 19.1%, certified by Fraunhofer, have been realized on 239-cm2 cells. A method is also presented to express recombination activity in the cell base as a component of total reverse saturation current density. This allows recombination activity in all three regions of the cell (n+ region and its surface, n-base, and p+ region and its surface) to be compared as components of the total cell J0 to aid in maximizing Voc.

Published in:

Photovoltaics, IEEE Journal of  (Volume:1 ,  Issue: 2 )