Cart (Loading....) | Create Account
Close category search window

Characterization of the Excess Noise Conversion From Optical Relative Intensity Noise in the Photodetection of Mode-Locked Lasers for Microwave Signal Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wu, K. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Shum, P.P. ; Aditya, S. ; Ouyang, C.
more authors

Excess noise converted from the optical relative intensity noise (RIN) has limited the noise performance in the microwave signal synthesis application for mode-locked lasers. In this paper, a method for detailed characterization of the excess noise conversion from the optical RIN to the electrical pulse width jitter (PWJ), electrical relative amplitude noise (RAN) and electrical phase noise in the photodetection of mode-locked lasers is proposed. With the measured noise conversion ratios, one can predict the electrical RAN and phase noise power spectral densities under different input optical powers. The effect of the pulse width and peak power of the incident optical pulses and the effect of the saturation power of the photodetectors are also investigated. The results are used to suggest guidelines for achieving low-noise photodetection for microwave signal synthesis application.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 24 )

Date of Publication:

Dec.15, 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.