By Topic

Efficient Distributed Algorithms for Dynamic Access to Shared Multiuser Channels in SINR-Constrained Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kučera, S. ; Bell Labs., Alcatel-Lucent Ireland, Ltd., Dublin, Ireland ; Kučera, L. ; Bing Zhang

In wireless networks, simultaneously active transmitters typically operate in separate communication channels to avoid mutual interference. This study focuses on the challenge of increasing the capacity of a wireless network by enabling multiple transmissions in each available channel. Active transmitters are assumed to maintain the receiver signal-to-noise-and-interference ratio (SINR) at a predetermined target value via power control to promote the quality of wireless connections. To this end, we propose distributed medium access algorithms that allow every transmitter-receiver pair to determine whether a target SINR is physically achievable through iterative power control in a given shared channel. The proposed algorithms are shown by theoretical analysis to be fast, accurate, and energy efficient. Numerical simulations demonstrate their ability to outperform related medium access schemes based on random access, carrier sensing, controlled power up, or invariant channel probing. Our major contribution consists of solving the open problem of accurate real-time computation of the spectral radius of an unknown network information matrix. This makes our framework applicable not only to testing target SINR achievability, but also to other aspects of wireless engineering such as energy efficiency, power control stability, and handover prioritization, in which knowledge of the spectral radius plays a key role.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:11 ,  Issue: 12 )