By Topic

Robust Dense Registration of Partial Nonrigid Shapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tingbo Hou ; Dept. of Comput. Sci., Stony Brook Univ., Stony Brook, NY, USA ; Hong Qin

This paper presents a complete and robust solution for dense registration of partial nonrigid shapes. Its novel contributions are founded upon the newly proposed heat kernel coordinates (HKCs) that can accurately position points on the shape, and the priority-vicinity search that ensures geometric compatibility during the registration. HKCs index points by computing heat kernels from multiple sources, and their magnitudes serve as priorities of queuing points in registration. We start with shape features as the sources of heat kernels via feature detection and matching. Following the priority order of HKCs, the dense registration is progressively propagated from feature sources to all points. Our method has a superior indexing ability that can produce dense correspondences with fewer flips. The diffusion nature of HKCs, which can be interpreted as a random walk on a manifold, makes our method robust to noise and small holes avoiding surface surgery and repair. Our method searches correspondence only in a small vicinity of registered points, which significantly improves the time performance. Through comprehensive experiments, our new method has demonstrated its technical soundness and robustness by generating highly compatible dense correspondences.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 8 )