By Topic

SinkTrail: A Proactive Data Reporting Protocol for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinxin Liu ; Comput. & Inf. Sci. & Eng. Dept., Univ. of Florida, Gainesville, FL, USA ; Han Zhao ; Xin Yang ; Xiaolin Li

In large-scale Wireless Sensor Networks (WSNs), leveraging data sinks' mobility for data gathering has drawn substantial interests in recent years. Current researches either focus on planning a mobile sink's moving trajectory in advance to achieve optimized network performance, or target at collecting a small portion of sensed data in the network. In many application scenarios, however, a mobile sink cannot move freely in the deployed area. Therefore, the precalculated trajectories may not be applicable. To avoid constant sink location update traffics when a sink's future locations cannot be scheduled in advance, we propose two energy-efficient proactive data reporting protocols, SinkTrail and SinkTrail-S, for mobile sink-based data collection. The proposed protocols feature low-complexity and reduced control overheads. Two unique aspects distinguish our approach from previous ones: 1) we allow sufficient flexibility in the movement of mobile sinks to dynamically adapt to various terrestrial changes; and 2) without requirements of GPS devices or predefined landmarks, SinkTrail establishes a logical coordinate system for routing and forwarding data packets, making it suitable for diverse application scenarios. We systematically analyze the impact of several design factors in the proposed algorithms. Both theoretical analysis and simulation results demonstrate that the proposed algorithms reduce control overheads and yield satisfactory performance in finding shorter routing paths.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 1 )