By Topic

GPU Computing for Parallel Local Search Metaheuristic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thé Van Luong ; LIFL, Universite Lille 1, and INRIA Lille NordEurope ; Nouredine Melab ; El-Ghazali Talbi

Local search metaheuristics (LSMs) are efficient methods for solving complex problems in science and industry. They allow significantly to reduce the size of the search space to be explored and the search time. Nevertheless, the resolution time remains prohibitive when dealing with large problem instances. Therefore, the use of GPU-based massively parallel computing is a major complementary way to speed up the search. However, GPU computing for LSMs is rarely investigated in the literature. In this paper, we introduce a new guideline for the design and implementation of effective LSMs on GPU. Very efficient approaches are proposed for CPU-GPU data transfer optimization, thread control, mapping of neighboring solutions to GPU threads, and memory management. These approaches have been experimented using four well-known combinatorial and continuous optimization problems and four GPU configurations. Compared to a CPU-based execution, accelerations up to times 80 are reported for the large combinatorial problems and up to times 240 for a continuous problem. Finally, extensive experiments demonstrate the strong potential of GPU-based LSMs compared to cluster or grid-based parallel architectures.

Published in:

IEEE Transactions on Computers  (Volume:62 ,  Issue: 1 )