By Topic

DM-pred Method: A New Method to Predict Secondary Structures Based on Data Mining Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sondes Fayech ; LARODEC, Univ. of Tunis, Tunis, Tunisia ; Nadia Essoussi ; Mohamed Limam

Protein secondary structure prediction is a key step in prediction of protein tertiary structure. There have emerged many methods based on machine learning techniques, such as neural networks (NN) and support vector machines (SVM), to focus on the prediction of the secondary structures. In this paper a new method, DM-pred, was proposed based on a protein clustering method to detect homologous sequences, a sequential pattern mining method to detect frequent patterns, features extraction and quantification approaches to prepare features and SVM method to predict structures. When tested on the most popular secondary structure datasets, DM-pred achieved a Q3 accuracy of 78.20% and a SOV of 76.49% which illustrates that it is one of the top range methods for protein secondary structure prediction.

Published in:

2011 22nd International Workshop on Database and Expert Systems Applications

Date of Conference:

Aug. 29 2011-Sept. 2 2011