By Topic

Improving Situation Recognition via Commonsense Sensor Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nicola Bicocchi ; Dipt. di Ing. deli'Inf., Univ. di Modena e Reggio Emilia, Modena, Italy ; Gabriella Castelli ; Marco Mamei ; Franco Zambonelli

Pervasive services often rely on multi-modal classification to implement situation-recognition capabilities. However, current classifiers are still inaccurate and unreliable. In this paper we present preliminary results obtained with a novel approach that combines well established classifiers using a commonsense knowledge base. The approach maps classification labels produced by independent classifiers to concepts organized within the Concept Net network. Then it verifies their semantic proximity by implementing a greedy approximate sub-graph search algorithm. Specifically, different classifiers are fused together on a commonsense basis for both: (i) improve classification accuracy and (ii) deal with missing labels. Experimental results are discussed through a real-world case study in which two classifiers are fused to recognize both user's activities and visited locations.

Published in:

2011 22nd International Workshop on Database and Expert Systems Applications

Date of Conference:

Aug. 29 2011-Sept. 2 2011