By Topic

Acceleration Strategies in Generalized Belief Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shengyong Chen ; Department of Informatics, University of Hamburg, Hamburg, Germany ; Zhongjie Wang

Generalized belief propagation is a popular algorithm to perform inference on large-scale Markov random fields (MRFs) networks. This paper proposes the method of accelerated generalized belief propagation with three strategies to reduce the computational effort. First, a min-sum messaging scheme and a caching technique are used to improve the accessibility. Second, a direction set method is used to reduce the complexity of computing clique messages from quartic to cubic. Finally, a coarse-to-fine hierarchical state-space reduction method is presented to decrease redundant states. The results show that a combination of these strategies can greatly accelerate the inference process in large-scale MRFs. For common stereo matching, it results in a speed-up of about 200 times.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:8 ,  Issue: 1 )